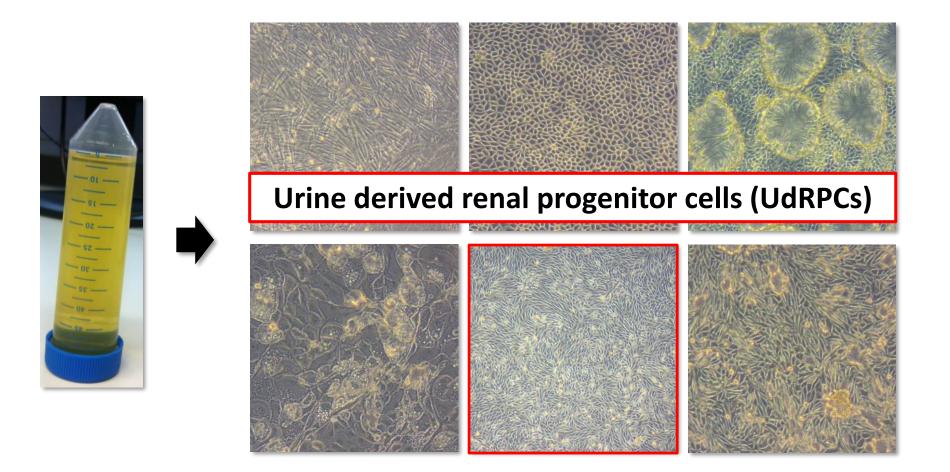
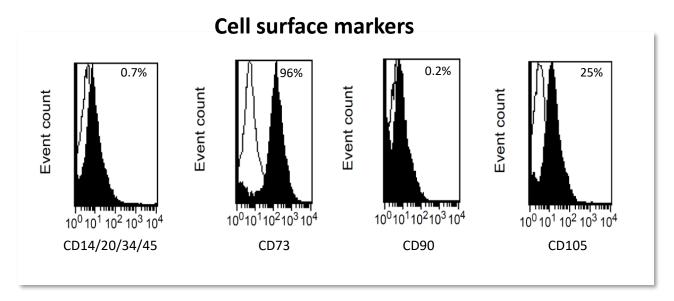


Human urine as a non-invasive source of kidney progenitor cells amenable for nephrotoxicity studies

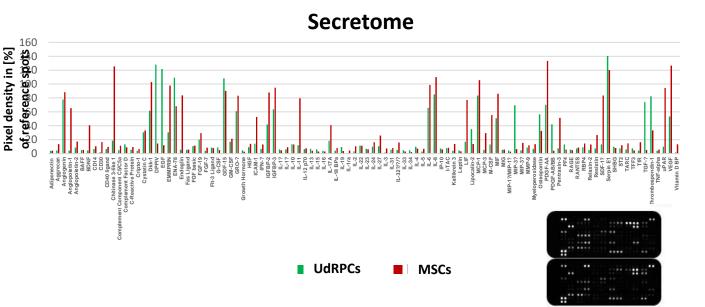
Prof. Dr James Adjaye



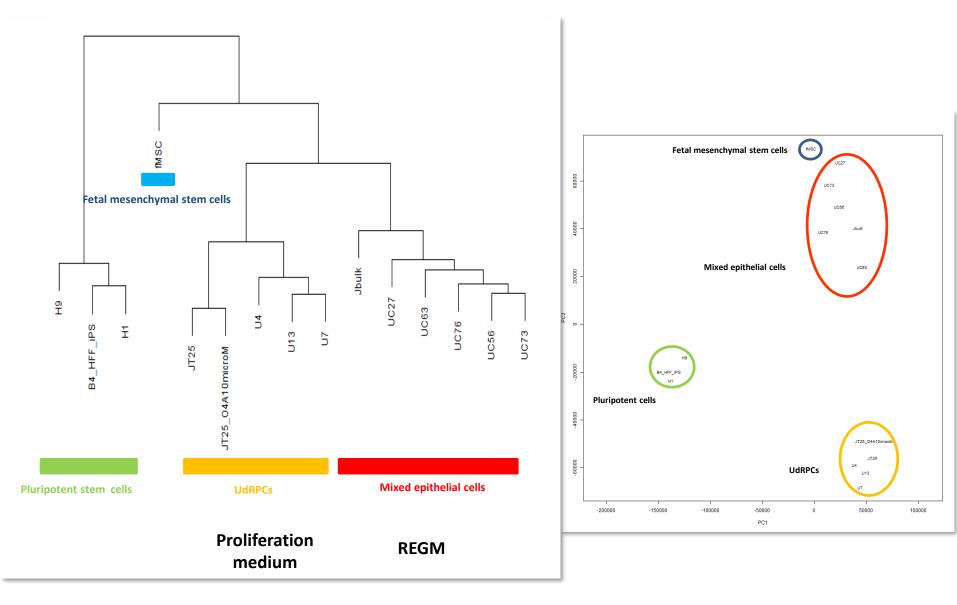


Disclaimer: Co-founder

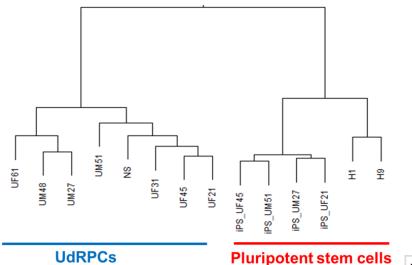
Urine consists of distinct cell types originating from the upper urinary track

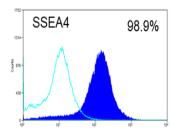


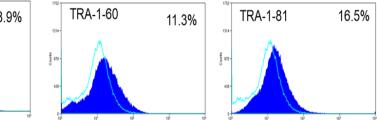
Urine derived renal progenitor cells (UdRPCS) are MSCs



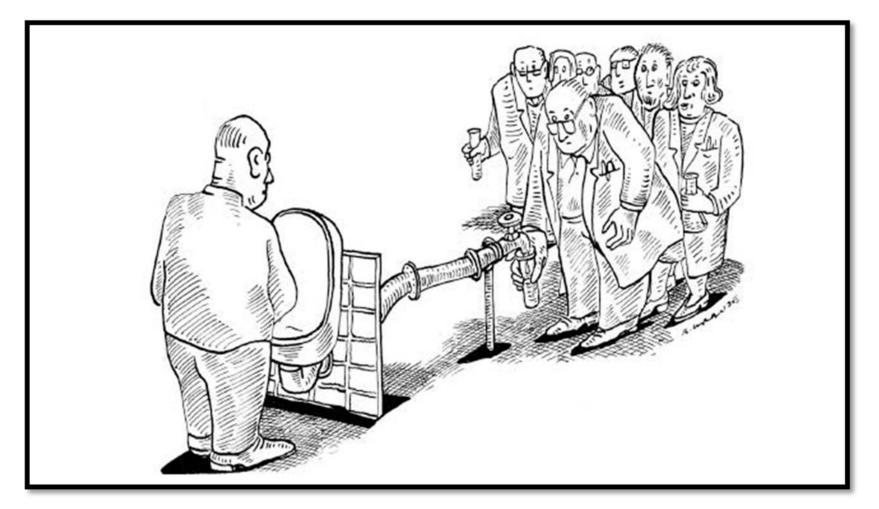
Differentiation






Comparative transcriptome analysis after selection with distinct media

UdRPCs are not pluripotent but share overlapping self-renewal pathways with pluripotent stem cells



_			
5	kegg_name	p_hyper	q_hyper
	Neurotrophin signaling pathway	4.2817E-06	4.9026E-05
	Insulin signaling pathway	1.8973E-05	0.00016711
	p53 signaling pathway	7.5735E-05	0.00052555
	Notch signaling pathway	0.00026257	0.00167025
	mTOR signaling pathway	0.00056803	0.00333535
	Renal cell carcinoma	0.00118158	0.00588219
	ErbB signaling pathway	0.00211584	0.01009431
	Wnt signaling pathway	0.00358524	0.01492763
	Focal adhesion	0.00907485	0.03247096
	Tight junction	0.01081839	0.03742005
	TGF-beta signaling pathway	0.01276454	0.04059834

Kidney-associated Gene Ontologies

Pvalue	Term	
0.00020807	renal system development	
0.00047809	urogenital system development	
0.0008348	kidney development	
0.00089158	cellular component assembly involved in morphogenesis	
0.00295683	system development	transmembrane
0.00540953	response to lipid	t catabolic response
0.00552771	anatomical structure development	⁸ process
0.00632622	response to organic cyclic compound	ti catabolic response process up is binding antigen
0.00912449	organ development	
0.01183198	central nervous system development	
0.01188333	anatomical structure formation involved in morphogenesis	differentiation 2 protein cell
0.01189563	chemical homeostasis	morphogenesis
0.01317304	brain development	development
0.01713733	germ-line stem cell division	activity
0.01713733	male germ-line stem cell asymmetric division	regulation
0.01713733	diapedesis	regulation
0.01713733	renal water absorption	
0.01713733	glomerular endothelium development	
0.01713733	germline stem cell asymmetric division	
0.01718154	renal water homeostasis	
0.0175112	cell projection morphogenesis	
0.01837454	immune system process	

Putting the Pee in Pluripotency

The Scientist Magazine®

Generation of integration-free neural progenitor cells from cells in human urine

Lihui Wang^{1–3}, Linli Wang^{1,2}, Wenhao Huang^{1,2}, Huanxing Su^{1,2,7}, Yanting Xue^{1,2,4}, Zhenghui Su^{1,2,4}, Baojian Liao^{1,2}, Haitao Wang^{1,2}, Xichen Bao^{1,2}, Dajiang Qin^{1,2}, Jufang He⁵, Wutian Wu⁶, Kwok Fai So⁶, Guangjin Pan^{1,2} & Duanqing Pei^{1,2}

RESOURCE ARTICLE

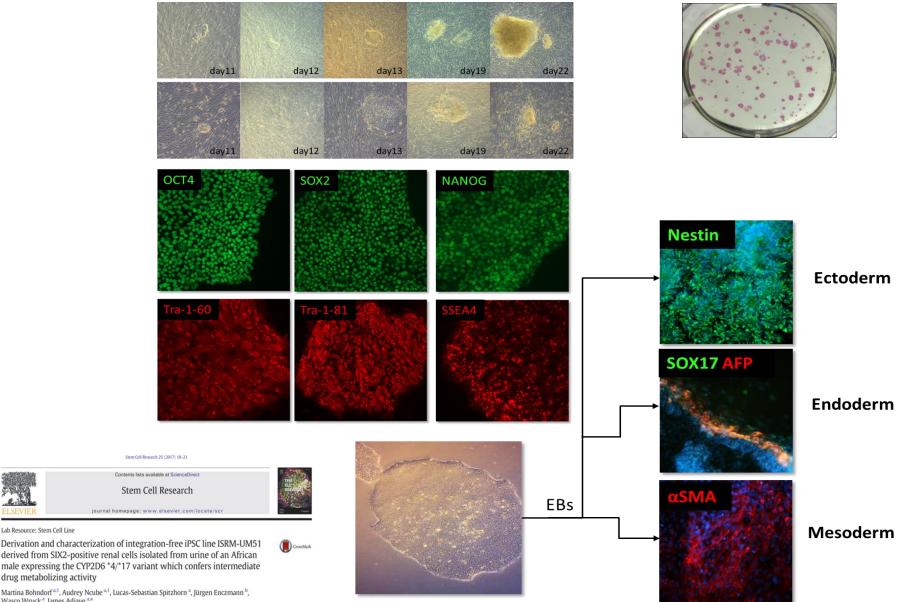
Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia

Karim Si-Tayeb^{1,2,3,*,‡}, Salam Idriss^{1,2,3,*}, Benoite Champon^{1,2,3}, Amandine Caillaud^{1,2,3}, Matthieu Pichelin^{1,2,3,4}, Lucie Arnaud^{1,2,3}, Patricia Lemarchand^{1,2,3}, Cédric Le May^{1,2,3}, Kazem Zibara⁵ and Bertrand Cariou^{1,2,3,4}

Human Urinary Epithelial Cells as a Source of Engraftable Hepatocyte-like

Cells using Stem Cell Technology

AUTHORS


Vanessa Sauer^{1,2,4}, Tatyana Tchaikovskaya^{1,2}, Xia Wang^{1,2}, Yanfeng Li^{1,2}, Wei Zhang^{2,3}, Krisztina Tar^{1,2,6}, Zsuzsanna Polgar^{1,2}, Jianqiang Ding^{1,2}, Chandan Guha^{2,3}, Ira J. Fox⁵, Namita Roy-Chowdhury^{1,2}. Jayanta Roy-Chowdhury^{1,2}

STEM CELLS[®] TISSUE-SPECIFIC STEM CELLS

Multipotential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology

Shantaram Bharadwaj,^a Guihua Liu,^a Yingai Shi,^a Rongpei Wu,^{a,b} Bin Yang,^{a,c} Tongchuan He,^d Yuxin Fan,^e Xinyan Lu,^f Xiaobo Zhou,^g Hong Liu,^h Anthony Atala,^a Jan Rohozinski,^{a,i} Yuanyuan Zhang^a

Integration-free iPSCs can be efficiently derived using episomalbased plasmids without pathway perturbations

Martina Bohndorf^{a,1}, Audrey Ncube^{a,1}, Lucas-Sebastian Spitzhorn^a, Jürgen Enczmann^b, Wasco Wruck ^a, James Adjaye ^{a,*}

Lab Resource: Stem Cell Line

drug metabolizing activity

Towards Personalized drug testing and development

CrossMark

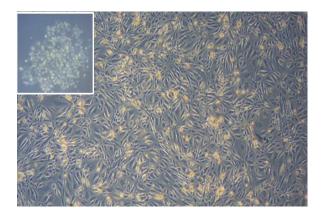
Stem Cell Research 25 (2017) 18-21

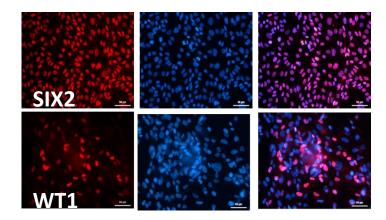
Contents lists available at ScienceDirect Stem Cell Research

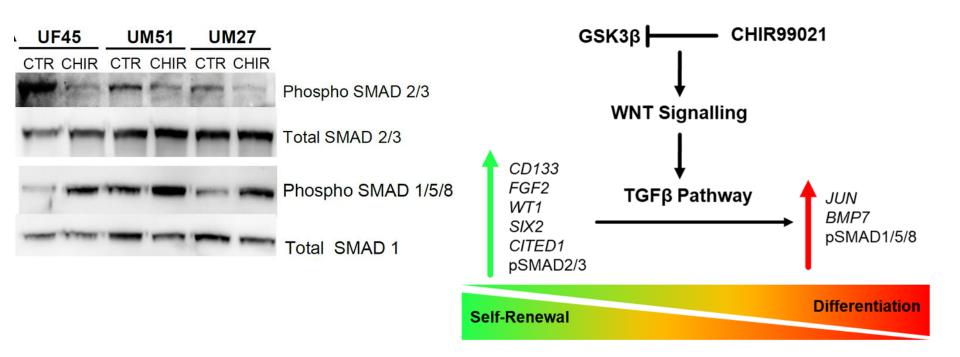
journal homepage: www.elsevier.com/locate/scr

Lab Resource: Stem Cell Line

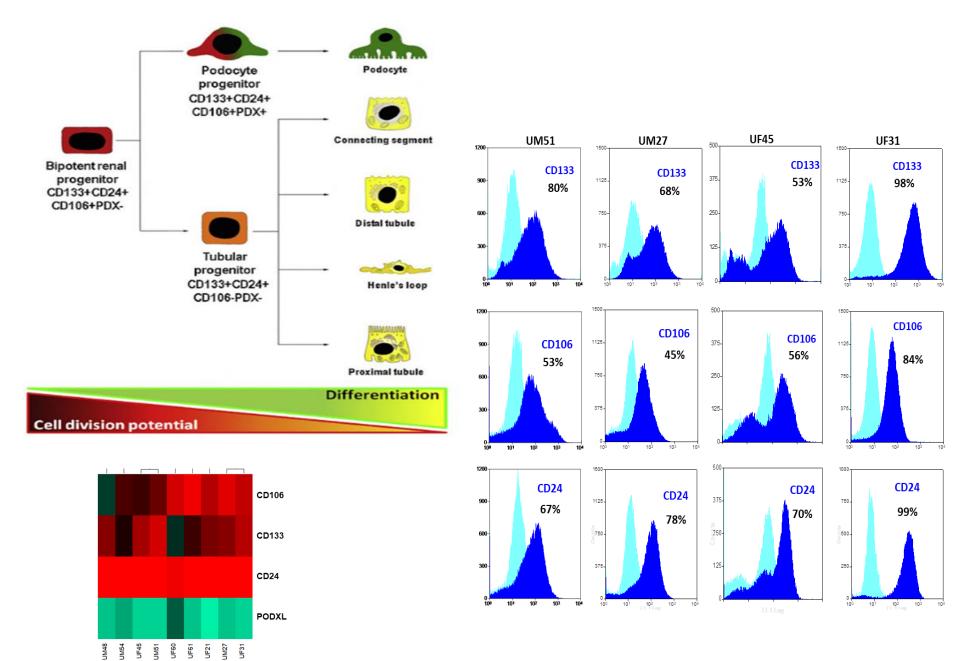
Derivation and characterization of integration-free iPSC line ISRM-UM51 derived from SIX2-positive renal cells isolated from urine of an African male expressing the CYP2D6 *4/*17 variant which confers intermediate drug metabolizing activity

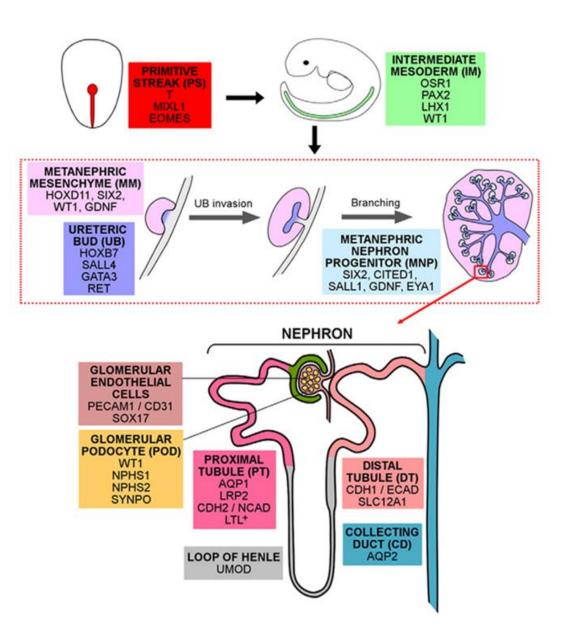

Martina Bohndorf^{a,1}, Audrey Ncube^{a,1}, Lucas-Sebastian Spitzhorn^a, Jürgen Enczmann^b, Wasco Wruck^a, James Adjaye^{a,*}

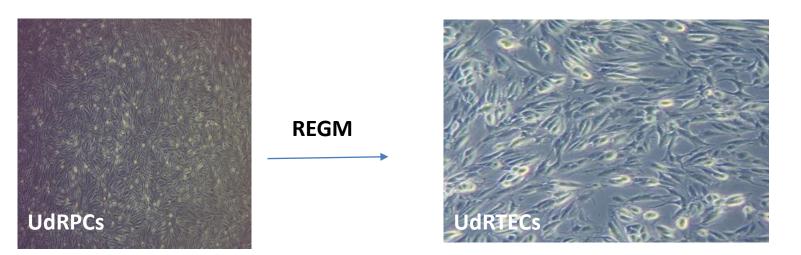

Phenotype	Frequency
Poor Metabolizer (PM)	5%
Intermediate Metabolizer (IM)	6.9%
Extensive Metabolizer (EM)	84%
Ultrarapid Metabolizer (UM)	3.7%

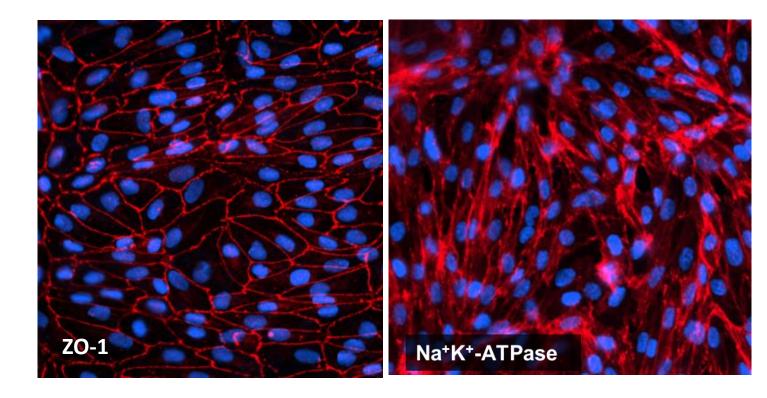

Sample ID	Gender	Age	Ethnicity	iPSC	CYP2D6 Genotype	CYP2D6 Phenotype
UM48	М	48	African	NO	-	-
UF60	F	60	Caucasian	NO	-	-
UM27	М	27	Caucasian	NO	CYP2D6*1x2/*4	NM
UF27	F	27	Caucasian	NO	-	-
UF61	F	61	Caucasian	NO	-	-
UM51	М	51	African	YES	CYP2D6*4/*17	IM
UF45	F	45	Caucasian	YES	CYP2D6*1/*4	NM
UF31	F	31	African	YES	CYP2D6*1/*41	UM
UF21	F	21	Caucasian	YES	CYP2D6*2/*2	NM
UM54	М	54	Caucasian	NO	-	-

Urine derived Renal Progenitor Cells UdRPCs

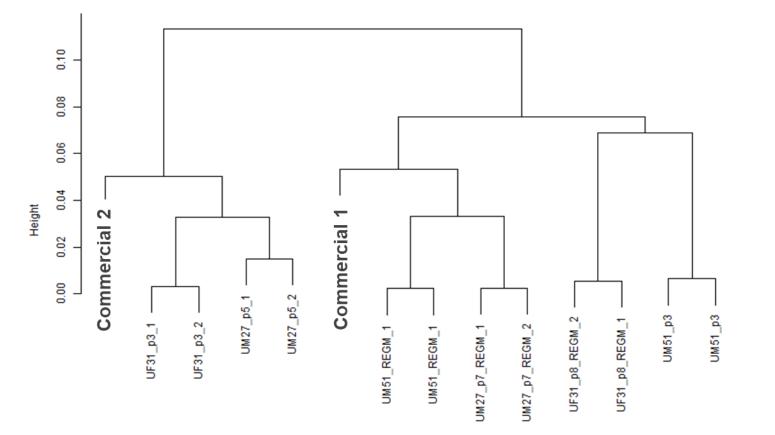

Self-renewal in UdRPCs is driven by FGF-, WNT-, TGF-β signalling mediated by SIX2, CITED1 and WT1

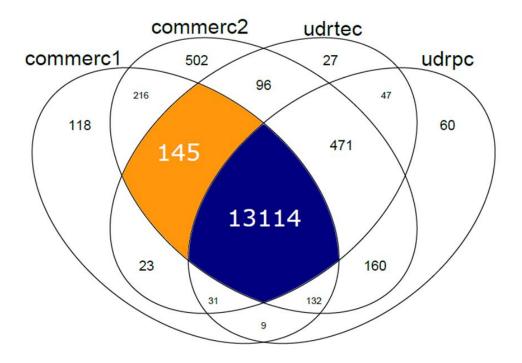



UdRPCs are Bipotential progenitors



Cell fate decisions during nephrogenesis

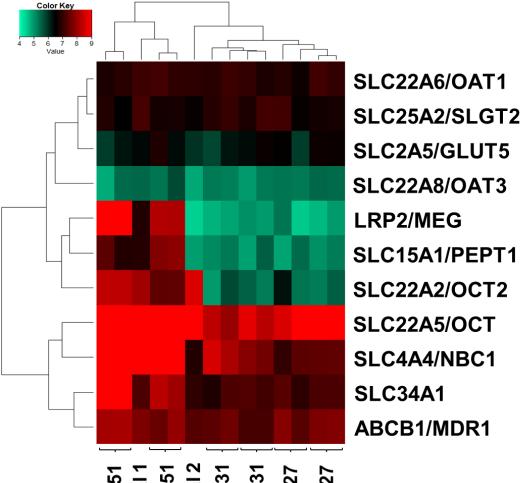

UdRPCs derived Renal Tubular Epithelial Cells


UdRPCs- differentiated renal tubular epithelial cells (UdRTECs) are similar to kidney derived counterparts

Cluster Dendrogram

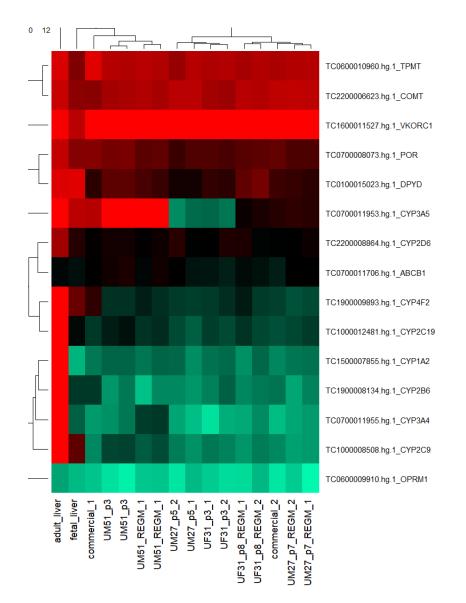
Sample	Commercial 1	Commercial 2	UdRTEC UM51	UdRTEC UM27	UdRTEC UF31
Commercial 1	1,0000	0,9641	0,9686	0,9666	0,9522
Commercial 2	0,9641	1,0000	0,9607	0,9741	0,9637
UdRTEC UM51	0,9686	0,9607	1,0000	0,9793	0,9536
UdRTEC UM27	0,9666	0,9741	0,9793	1,0000	0,9645
UdRTEC UF31	0,9522	0,9637	0,9536	0,9645	1,0000

Distinct and overlapping genes and associated biological processes



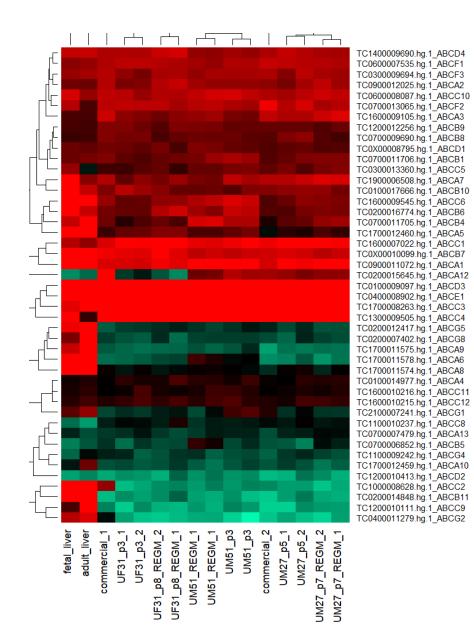
GOID Term

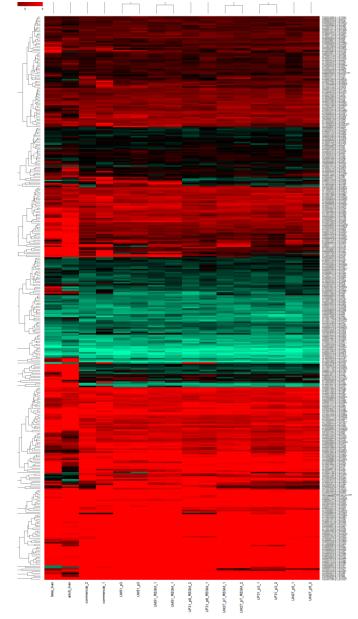
GO:0015747	urate transport
GO:0046415	urate metabolic process
GO:0001655	urogenital system development
GO:0090087	regulation of peptide transport
GO:0001822	kidney development
GO:0016323	basolateral plasma membrane
GO:0015143	urate transmembrane transporter activity
GO:0033157	regulation of intracellular protein transpor


GOID	Term
	intracellular protein transport
	protein transport
	cellular component morphogenesis
	regulation of cell morphogenesis
	nephron epithelium morphogenesis
GO:0060993	kidney morphogenesis
GO:0061005	cell dif. involved in kidney development
GO:0001655	urogenital system development
GO:0072163	mesonephric epithelium development
GO:0061333	renal tubule morphogenesis
GO:0001763	morphogenesis of a branching structure
GO:0072080	nephron tubule development
GO:0001657	ureteric bud development
GO:0016192	vesicle-mediated transport
GO:0072171	mesonephric tubule morphogenesis
GO:0072079	nephron tubule formation
GO:0051223	regulation of protein transport
GO:0003337	MET involved in metanephros morphogenesis
GO:0072006	nephron development
GO:0072033	renal vesicle formation
GO:0072282	metanephric nephron tubule morphogenesis
GO:0072087	renal vesicle development
GO:0001656	metanephros development
GO:0090184	positive regulation of kidney development
GO:0072170	metanephric tubule development
GO:0090316	Pos. regulation of intracellular protein transport
GO:0061217	regulation of mesonephros development
GO:0072074	kidney mesenchyme development
GO:0072307	metanephric nephron tubule epithelial cell dif.
	kidney development
GO:0072273	metanephric nephron morphogenesis

Overlapping expression of key kidney-associated transporters

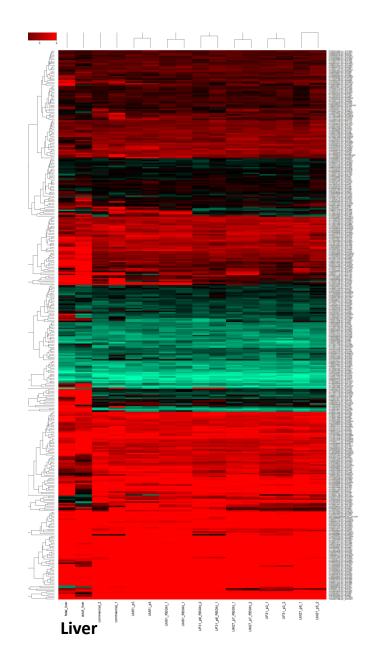
UM51 Commercial 1 UdRTEC UM51 Commercial 2 UdRTEC UF31 UARTEC UF31 UdRTEC UM27 UdRTEC UM27


Comparative expression of a PGx panel in liver and renal tubular epithelial cells

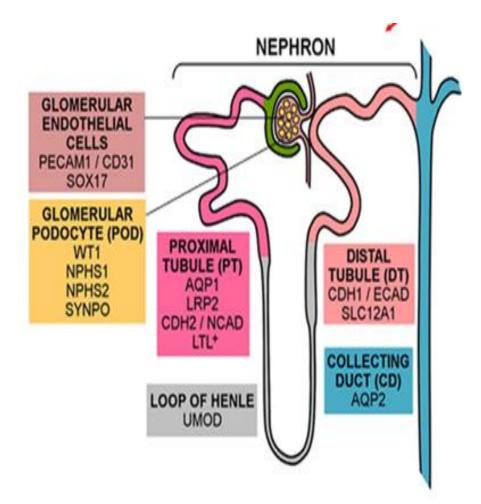

Pharmacogenetic (PGx) testing is a type of genetic test that assesses a patient's risk of an adverse response or likelihood to respond to a given drug, informing drug selection and dosing.

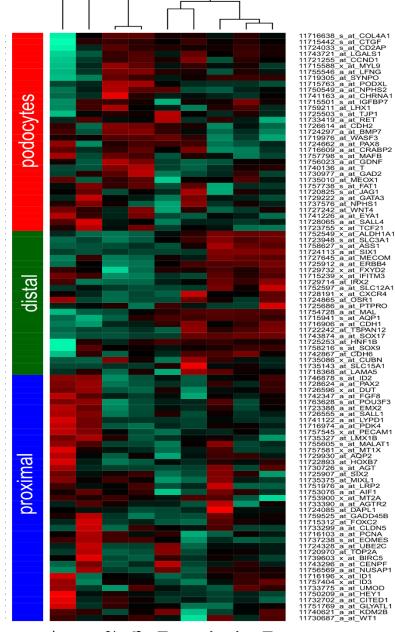
As a pillar of the personalized medicine movement, PGx testing is anticipated to be important across all medical specialties.

Comparative expression of ABC transporters in liver and renal tubular epithelial cells



Comparative expression of Cytochromes in liver and renal tubular epithelial cells


Liver


Comparative expression of SLC transporters in liver and renal tubular epithelial cells

UdRPCs are ideal for dissecting cell fate decisions during nephrogenesis

UdRPCs can be easily differentiated into distinct cell types present in the kidney

at GATA3 NPHS1

at ALDH1A1

SIX1

FGF8

M51_PODOCYTE3 JM51_NOTCH_INH UM51_TGFB_INH UM51_WNT UM51 M51 PODOCYTE2 UM51_BMP7 UM51_WNT_BMP7 M51_PODOCYTE1

- Urine-derived renal progenitor cells (UdRPCs) from healthy adult individuals were successfully isolated from urine samples.
- They express the self-renewal regulating transcription factors SIX2, CITED1, WT1, as well as the bipotential renal progenitor markers CD24, CD106 and CD133 endowing them to differentiate into podocytes or renal tubular epithelial cells.
- UdRPCs can be efficiently reprogrammed into UdRPC-iPSCs using nonintegrating episomal plasmids.
- Similar to MSCs, UdRPCs express Vimentin and have trilineage differentiation potential and the ability to secrete cytokines and growth factors known to support tissue regeneration and modulating the immune system.
- UdRPCs and kidney-derived renal tubular epithelial cells express overlapping and distinct cytochromes and transporters when compared to liver-biopsy derived hepatocytes.
- With our established protocols we are able to isolate renal progenitor cells from urine (UdRPCs) and thereby provide a novel tool for nephrogenesis, toxicology studies and drug development.

NON-INVASIVE SOURCE

Conclusions

- Urine derived progenitor cells (UdRPCs) can be cultivated on plastic, gelatin and Matrigel
- UdRPCs express a number of pluripotency-associated proteins but not
 POU5F1/OCT4 NANOG and SOX2
- UdRPCs are not Pluripotent rather Multipotent (Osteoblasts, adipocytes and Chonrocytes)
- Induction of pluripotency is rapid and efficient compared to other somatic cell types
- UdRPCs are endowed with an epigenetic memory enabling rapid and more efficient differentiation into Renal epithelial tubular cells and Hepatocyte-like cells
- UdRPCs express a distinct set of Drug transporters not expressed in hepatocytes
- UdRPCs are an ideal cell type for studying nephrogenesis , hepatogenesis and modelling kidney and liver related diseases,
- Ideal for toxicology and drug screening

UdRPCs should be considered for cell replacement therapies in the future

Acknowledgements

Dr Lucas-Sebastian Spitzhorn Dr Lars Erichsen Dr Nina Graffmann **Audrey Ncube** Md Shaifur Rahman Wasco Wruck Martina Bohndorf Soraia Martins Lisa Nguyen

This work was funded by EFRE.NRW and the medical faculty of the Heinrich Heine University (HHU) Düsseldorf.

EUROPEAN UNION Investing in our Future **European Regional Development Fund**

EFRE.NRW Investitionen in Wachstum und Beschäftigung

Ministerium für Wirtschaft, Innovation, **Digitalisierung und Energie** des Landes Nordrhein-Westfalen

