

Evaluation of in vitro embryo-toxicity tests for Chinese herbal medicines

Lucia Lu Ll, M.B.B.S, Ph.D.

Zhejiang Chinese Medical University, China

Horst Spielmann

FU Berlin, Germany

Evaluation of in vitro embryotoxicity tests for Chinese herbal medicines

Lu Li^{a,b,c}, Ling Yin Tang^b, Bo Liang^b, Rongyun Wang^d, Qiuhua Sun^d, Clara Bik San Lau^c, Ping Chung Leung^c, Ellen Fritsche^e, Manfred Liebsch^f, Andrea E.M. Seiler Wulczyn^f, Horst Spielmann^g, Chi C. Wang^{a,b,h,i,*}

^a College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
^b Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong

Contents lists available at ScienceDirect

Reproductive Toxicology

Reproductive Toxicology

Reproductive Toxicology 89 (2019) 45-53

The validated embryonic stem cell test to predict embryotoxicity *in vitro*

Andrea E M Seiler¹ & Horst Spielmann²

NATURE PROTOCOLS | VOL.6 NO.7 | 2011 | 961

Background

Traditional Chinese Medicine

- Widely applied with long history
- Promote both mothers' & fetuses' health
- Effective in many pregnancy disorders
- Few embryotoxic effects
- Lacking scientific evidence of its claimed applications

Li L, et al. NOVA. 2014. / Li L, et al. NOVA. 2014. / Li L, et al. Hum Rep U. 2012. / Li L, et al. Cochrane Review. 2012./ Li L, et al. NOVA. 2011. / Li L, et al. Cochrane Review. 2010.

Therapeutic Approaches

- Chinese medicines
- Acupuncture
- Food therapy
- Tai Chi exercise
- Qi Gong
- Cupping
- Tui Na (Physical therapy)
- Die Da
- Gua Sha

Chinese medicines

Origins

Plant original (85%)

= Chinese herbal medicines (CHMs)

- Animal original (10%)
- Mineral original (5%)

Chinese Pharmacopeia

- 6,000 CHMs
- 250 CHMs commonly for pregnancy
- 31 CHMs forbidden during pregnancy

Prevalence during pregnancy

Western Countries

Asian Countries

2015 NOBEL PRIZE IN PHYSIOLOGY OR MEDICINE

William C. Campbell Satoshi Ōmura Youyou Tu

Aim

- CHMs have been widely used during pregnancy,
- but feto-embryo safety tests are lacking.
- Here we evaluated *in vitro embryotoxicity tests (IVTs) as alternative methods in assessing developmental* toxicity of CHMs,
- to report the importance of validated in vitro toxicity tests for the safety testing of CHMs.

Previous Work - Report

- Ten CHMs were selected and classified as strongly, weakly and non-embryotoxic.
- All test CHMs were authentication qualified.
- Three well validated IVTs and prediction models (PMs) were compared.
- - embryonic stem cell test (EST),
- - micromass (MM)
- - whole embryo culture (WEC)

Fig. 1. Dose response curves of Chinese herbal medicines in *in vitro* embryotoxicity tests. A. Cytotoxicity and differentiation of 3T3 and D3 cells in embryonic stem cell test. B. Differentiation of dissociated limb buds in micromass test. C. Morphological score of embryo development in whole mouse embryo culture test. Mean values and representative regression lines from 3 replicated samples in 3 independent experiments are presented.

All strongly embryotoxic CHMs were predicted by MM and WEC PM2. While all weakly embryotoxic CHMs were predicted by MM and WEC PM1. All non-embryotoxic CHMs were classified by EST, MM, but over-classified as weakly embryotoxic by WEC PM1.

Our findings

- Overall predictivity, precision and accuracy of WEC determined by PM2 were better than EST and MM tests.
- Compared with validated chemicals, performance of IVTs for CHMs was comparable.
- So IVTs are adequate to identify and exclude embryotoxic potential of CHMs in this training set.

Chinese herbal medicines of PHF

Pharmaceutical Name	English Name	Chinese Name	CHM images	Yield (%)	Clinical Dose	LD ₅₀ (g/kg) (mice)
Flos Ionicerae	Honeysuckle Flower	Jin Yin Hua (JYH)		34.2%	6-15g (100-250mg/kg)	67.6~81.7
Cortex moutan	Tree Peony Bark	Mu Dan Pi (MDP)		23.4%	6-9g (100-150mg/kg)	3.4
Cortex phellodendri	Amur Corktree Bark	Huang Bai (HB)		13.7%	3-12g (50-200mg/kg)	2.7
Herba menthae	Common Mint	Bo He (BH)		28.6%	3-6g (50-100mg/kg)	3.3
Rhizoma atratylodis	Swordlike Atractylodes Rhizome	Cang Zhu (CZ)		34.0%	3-9g (50-150mg/kg)	≥ 5.0

Pentaherbs Formulation (PHF): 2:2:1:2:2, and clinical effects have been proved.

Objectives

 To evaluate and predict the embryotoxicity potentials of a CHM formula used for the treatment of atopic dermatitis by Embryonic Stem Cell Test (EST)

Methods

- EST Differentiation assay (embryonic stem cells)
- EST Cytotoxicity assay (embryonic stem cells & fibroblast)
- Skin irritation test cytotoxicity assay (EPI-200 skin tissues)

Overview of EST Protocol

Nature Protocol 2011

Summary I - EST results

Classification: (A Seiler, nature protocols, 2011)			Non-embryotoxic Weakly embryoto Strongly embryoto	If I>II a kic If II>I a oxic If III>I	If I>II and I>III If II>I and II>III If III>I and III>II		
	JYH	MDP	НВ	BH (Mint)	CZ	PHF formula	
Functions Results	> , >	> , >	> , >	> , >	> , >	> , >	
Classification (<i>EST</i>)	Non- embryotoxic	Non- embryotoxic	Weakly- embryotoxic	Non- embryotoxic	Non- embryotoxic	Non- embryotoxic	
N number	3~4	3~4	3~4	3~4	3~4	3~4	

Pharmaceutical	English	Chinese	Chinese	IC50 3T3	IC50 D3	ID50 D3	Functions		EST	
Name	Name	PinYin	Name	μg/ml	μg/ml	μg/ml	I	Ш	Ш	Prediction
Flos lonicerae	Honeysuckle Flower	Jin Ying Hua	金银花	375,4	1151	360,9	10.0496685	9.78446441	-8.811138206	non
Herba menthae	Common Mint	Bo He	薄荷	122,6	444,8	252,7	11,5672772	9,25628838	-9,607299511	non
Cortex moutan	Tree Peony Bark	Mu Dan Pi	牡丹皮	113,8	316,7	342,8	15,9099555	10,7164418	-10,74671549	non
Cortex phellodendri	Amur Corktree Bark	Huang Bai	黄柏	399,4	3,119	1,37	-3,8623964	1,80279936	-2,448830745	WEAKLY
Rhizoma atratylodis	Swordlike Atractylodes Rhizome	Cang Zhu	苍术	400.5	1198	467,5	11.3703204	10.3466115	-9.156898735	non
·	Formula (PHF)	5		231,2	258,5	347,1	9,40031001	8,56197037	-8,349369097	non

Conclusion

mEST in vitro embryotoxicity test

- Penta Herbs Formulation (PHF) should not be used during pregnancy
- The potentially embryotoxic Amur Corktree Bark to be eliminated from HPF and replaced by another CHM

First internet information platform

Safety of Chinese Herbal Medicines for Pregnancy FNG Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong Clinical **Clinical Studies Animal Studies** Test Methods Home Chinese Team Applications Medicines **Chinese Medicines**

In Asia countries, many pregnant women avoid Western medicines but opt for Chinese medicines to prevent its adverse effects on their fetuses. However, it is not very clear how safe the Chinese medicines are being used during pregnancy and if there are any toxicity or side-effects to both the mothers and babies. Here, we provide general and in-depth information regarding the safety concerns of Chinese herbal medicines during pregnancy.

Guest Book

Copyright © 2015. All Rights Reserved.

Hangzhou, China

Acknowledgements

Supervisors :

Prof. Yongsheng Fan (ZCMU, China)
Prof. Ping Chung Leung (CUHK, HK)
Prof. Ronald Wang (CUHK, HK)
Prof. Monika Schaefer-Korting (FU, Germany)
Dr. Andreas Seiler (BfR, Germany)
Prof. Andreas Luch (BfR, Germany)

Work Team in Germany:

Institute of Pharmacy, FU Dr. Vivian Kral, Mrs. Hannelore Gonska, Dr. André Said German Federal Institute for Risk Assessment (BfR) Dr. Andrea Hasse, Dr. Iris Mueller, Dr. Josephine Kugler **Work Team in Slovak Republic:** Dr. Helena Kandarova (MatTek) Ms. Silvia Letasiova (MatTek) **Work Teams in P.R. Hong Kong:** Prof. Tony Chung (O&G, CUHK. HK) Prof. Clara LAU (ICM, CUHK, HK)

Special Thanks:

Prof. Horst Spielmann (Germany) Prof. Hong Ching Lee (US)

Cochrane Pregnancy & Childbirth Group in Liverpool U & Oxford U, UK

Prof. James Neilson

Mrs. Sonja L Henderson, Mrs. Frances Kellie

Mrs. Denise Atherton, Miss Lei Dou

Research Grants & Scholarships: Germany: DAAD fellowship 13/14, 14/15 DAAD scholarship 09/10 Mainland China: National Natural Science Foundation 2014 Hong Kong: Health and Health Service Research Grant (Food and Health Bureau) **HK Special Administration Region (HHSRF** 06070511 & 09100031) PSG, RFS, conference grant (CUHK) Hop Wai Scholarship (CUHK) Zi Ying Scholarship (CUHK) Yu To Sang Memorial Scholarship 08/09 & 09/10 (CUHK)

Thank You