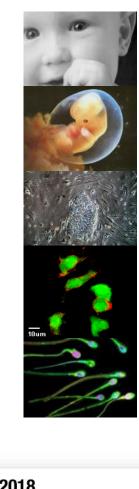
The European Commission's science and knowledge service Joint Research Centre

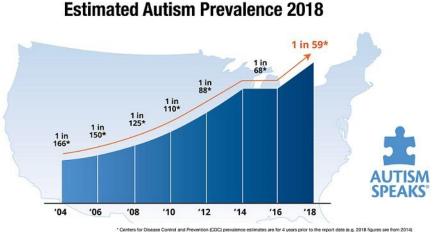
An AOP-driven assessment of developmental neurotoxicity induced by chemical mixtures using human iPSCderived neuronal/glial cultures

Francesca Pistollato Directorate F – Health, Consumers and Reference Materials Unit F3: Chemicals Safety and Alternative Methods, *Ispra, Italy*

:

3




European Commission

Developmental NeuroToxicity (DNT): evidence for increasing incidence of neurodevelopmental disorders

- **1 every 6 children** has a developmental disability that affect the CNS (*Atladottir et al., 2015*)
- Decreased learning and memory capacity, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD), dyslexia, etc.
- Overall estimates that 10-15% children are affected (Grandjean & Landrigan, Lancet, 2014)

Genetic factors account for no more than **30–40%** (NRC, 2000)

Humans, including the unborn, infants and children are indisputably co-exposed to more than one chemical at a time

Breast milk has been found to contain chemicals regulated as:

Cosmetics including:

- UV filters
- Parabens
- Phthalate metabolites

POPs

- pesticides (chlorpyrifos-ethyl, chlordane, DDTs/DDEs/DDDs, HCHs, dieldrin, hexachlorobenzene, parlars
- PCBs (28, 52,101, 118, 138,153, 180 etc.)
- PBDEs (28, 47, 99, 100, 153, 154 etc)

(Schlumpf et al., 2010, Chemosphere, 81:1171–1183)

Mixture risk assessment (MRA): the cumulative risk to human health or the environment from **multiple chemicals** via **multiple routes**

- \geq Mixture effects are defined as either an effect greater than the most potent single chemical in the mixture, or an effect that is additive or synergistic
- \geq The combined effects of chemicals across silos are not currently considered by regulation except a few examples e.g., maximum residue limits for pesticides in food registration (Regulation EC No 1881/2006)

DNT chemicals belong to diverse chemical groups:

- Pesticides (e.g. chlorpyrifos, paraquat, DDT) \succ
- Metals (e.g. lead, mercury, cadmium, arsenic, manganese, triethyltin) \succ
- POPs (PCBs, PBDEs flame retardants, perfluorate-PFOS and perfluorate-PFOA) \triangleright
- Endocrine disruptors (e.g. bisphenol A, perchlorate, triclosan, fluoride)
- Organic solvents (e.g. ethanol, toluene, xylene)
- Drugs (e.g. valproic acid, haloperidol, chlorpromazine, cocaine, dexamethasone) \geq

Chemicals grouped according to food-related use are subjected to three legislations:

312 potentially harmful to developing brain								
	104 Pesticides			101 tives/ingredients	107 Food contact materials			
Colourings 2	12 Preservatives	Other ad (includings stabilizers, wett	ditives weeteners,		56 Flavourings			

(Evans R., Martin O., Faust M. and Kortenkamp A., 2016; Science of the Total Environmental 543: 757-764)

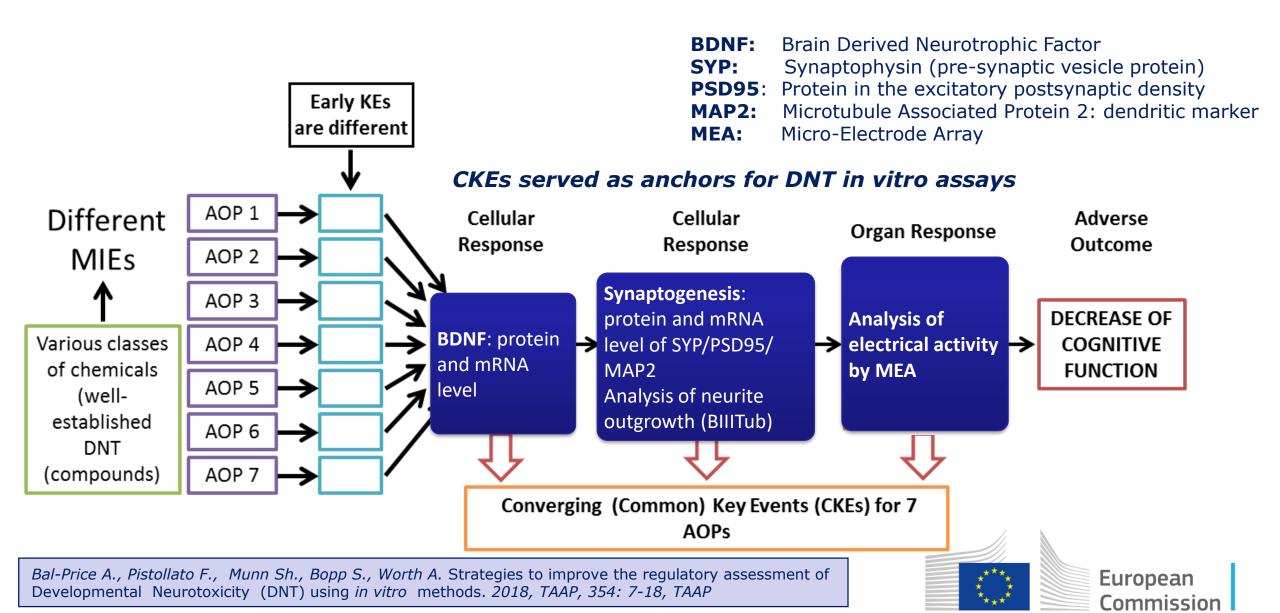
Aims of the study:

- Determine whether non-neurotoxic concentrations of single chemicals will produce DNT effects in mixtures
- Define <u>LOAECs</u> (Lowest Observable Adverse Effect Concentration) value for single chemicals and in mixture using DNT specific endpoints
- Build a battery of *in vitro* assays anchored to common key events identified in the DNT AOPs network using human neuronal/glial culture to identify chemicals associated with impairment of learning and memory in children

Grouping of chemicals based on biological or toxicological effects

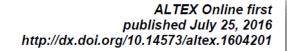
"MoA and AOP data provide a strong scientific basis to group chemicals"

Table 3: Examples of approaches for grouping chemicals


Grouping approach	<i>Overarching common feature</i>	Example	Comments
Common MoA or AOP	Toxicological or biological properties	Acetylcholine esterase inhibitors, AhR agonists, metabolism to similar bioactive metabolite(s)	Chemicals acting via <u>same</u> <u>pathways</u> that converge to <u>common</u> molecular target (adverse outcome)

Guidance on **Harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals** (EFSA Scientific Committee, 2019)

EFSA have recommended that pesticides which produce **common adverse outcomes on the same target organ/system (e.g., brain) should be grouped together for the purpose of assessing** <u>cumulative risk</u> in relation to maximum residue limit (MRL) setting (EFSA, 2013).



<u>Learning and memory impairment (cognitive damage) in children: the most</u> frequent AO of the existing AOPs relevant to DNT

Criteria for chemical selection

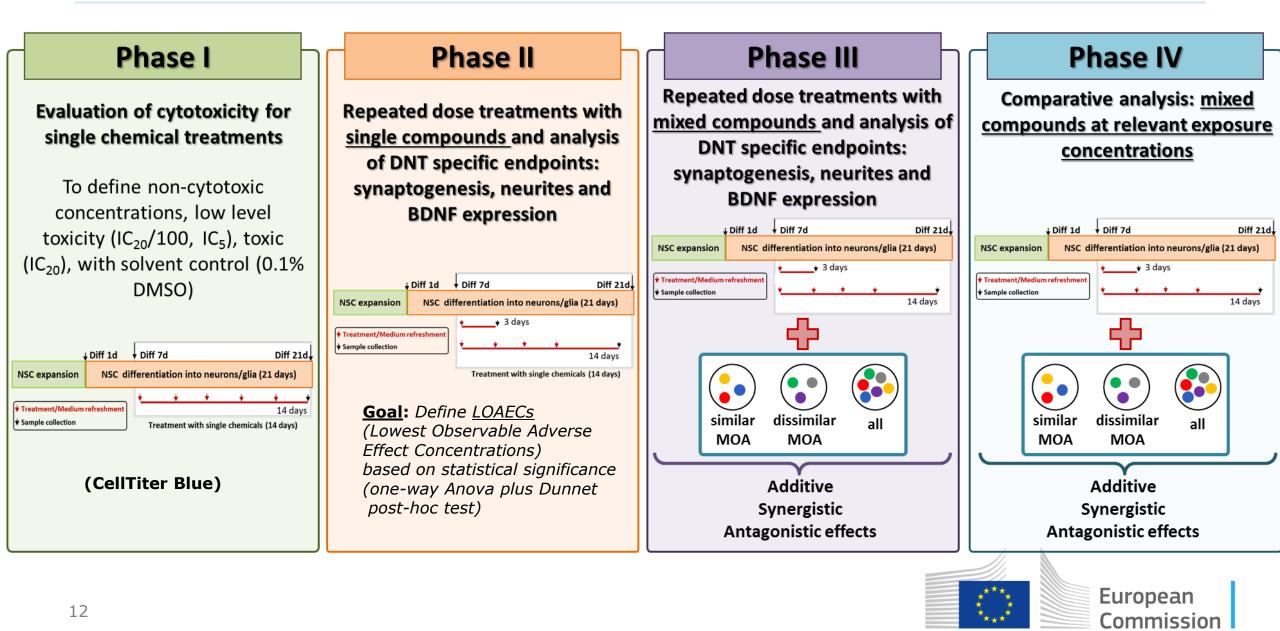
- 1. Compounds known to cause cognitive impairment (AO)
- 2. Compounds acting through identified common KEs in the AOPs
- 3. Compounds representing different classes (i.e., pesticides, industrial chemicals, heavy metals, POPs, and EDs)
- 4. Compounds found in human samples (e.g., breast milk, cord blood, urine, hair, umbilical cord plasma, brain tissues, maternal blood, or blood of children)
- 5. Compounds according to EFSA (2013) working through:
 - similar MoA
 - dissimilar MoA

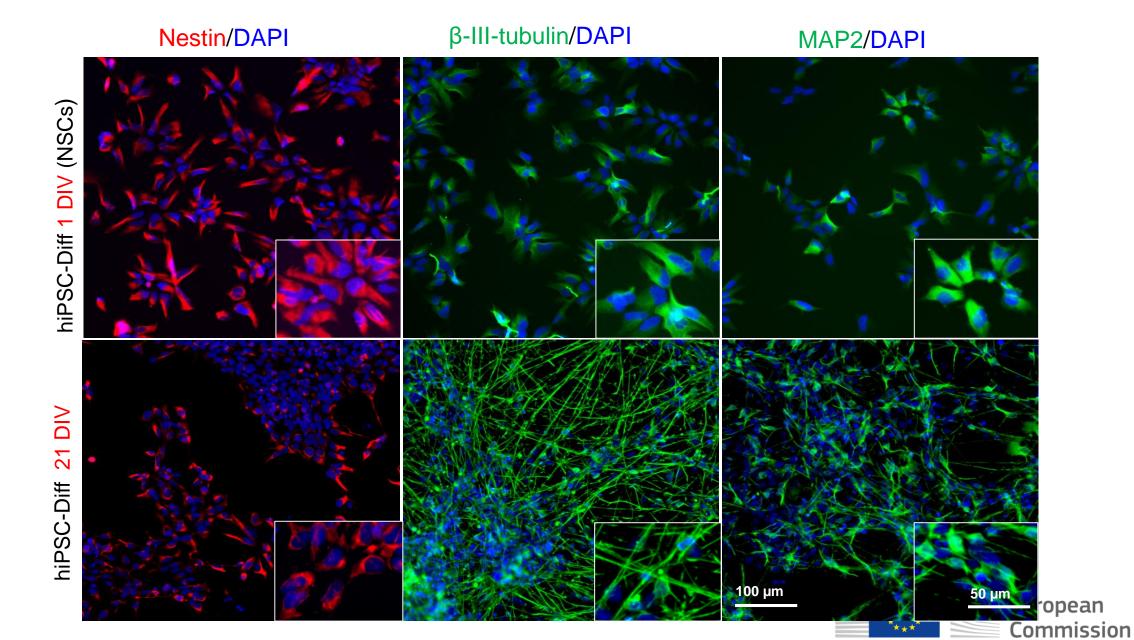
Draft guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals

EFSA Scientific Committee,

Anthony Hardy, Diane Benford, Thorhallur Halldorsson, Michael John Jeger, Helle Katrine Knutsen, Simon More, Hanspeter Naegeli, Hubert Noteborn, Colin Ockleford, Antonia Ricci, Guido Rychen, Josef R Schlatter, Vittorio Silano, Roland Solecki, Dominique Turck, Maged Younes, Emilio Benfenati, Laurence Castle, Susanne Hougaard Bennekou, Ryszard Laskowski, Jean Charles Leblanc, Andreas Kortenkamp, Ad Ragas, Leo Posthuma, Claus Svendsen, Emanuela Testai, Jose Tarazona, Bruno Dujardin, George EN Kass, Paola Manini, Jean-Lou CM Dorne and Christer Hogstrand (2018)

The selection of **heterogeneous** classes of chemicals

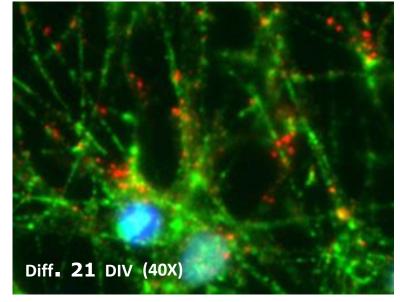

	Chemicals acting through	similar MoA (altered BDNF levels)				
	Chemical name	Class				
1	Lead(II) chloride	Metals				
2	Chlorpyrifos	Pesticide				
3	PBDE-47	РОР				
	(most abundant in human tissues)					
4	Ethanol Organic compound (industrial chemical)					
5	Bisphenol A (BPA)Organic compound (ED, estrogenic)					
	Chemicals acting through <u>dissim</u> Chemical name	ilar MoAs resulting in cognitive impairment Class				
1	Methyl mercury chloride	Metals				
2	Valproic acid	Antiepileptic drug (inhibits GABA transaminase)				
3	PCB-138	РОР				
	(most abundant in human tissues)					
4	Vinclozolin	Pesticide (ED, anti-androgenic)				
5	TCDD	POP (ED, anti-estrogenic)				


Chemical concentrations tested in vitro (Phase 1) in relation to concentrations found in human samples

Chemical	Abbrevi	Concentrations	Concentrations form lin hours a multi-				
	ation	tested <i>in vitro</i>	Concentrations found in human samples				
Lead(II)	Lead		Cord blood : range 1.09 - 11.41 μ g/L \rightarrow 0.0039 - 0.041 μ M				
chloride		0.78, 0.20 μM	Children blood: range 1.71 - 10 μ g/dL \rightarrow 0.061 – 0.36 μ M				
			IPChem:				
			Blood-whole blood: 3.76-69, 3.42-28.8, 4.13-43.6, 6.05-23.1 μ g/L (range 3.42 – 69) \rightarrow 0.012 – 0.25 μ M				
			Cord blood-whole blood (considering for plasma, 1.025 g/mL) 2.68-36.4 ng/g \rightarrow 0.00988 – 0.13 µM				
Chlorpyrifos	CPF	500, 125, 31.25, 7.81,	Cord plasma: 4.65 ng/mL \rightarrow 0.013 μ M				
		1.95, 0.49 μM	Cord blood: range 2.5 – 6.17 pg/g plasma (considering for plasma, 1.025 g/mL) \rightarrow 7.3x10 ⁻⁶ - 1.8x10 ⁻⁵ µM				
Bisphenol A	BPA	400, 100, 25, 6.25,	Children serum : range 0.85 - 22.5 ng/mL \rightarrow 0.0037 - 0.098 μ M				
		1.56, 0.39, 0.10 µM	PChem:				
			ood – plasma : n.d 3.5 ng/g (considering for plasma, 1.025 g/mL) \rightarrow n.d 0.016 μ M				
			Cord blood-whole blood: n.d1.9 ng/g (considering for plasma, 1.025 g/mL) \rightarrow n.d 0.0085 μ M				
Methyl-	Methyl-	10, 2.50, 0.63, 0.16,	Cord blood : range 0.70 - 35 μ g/L \rightarrow 0.0028 - 0.14 μ M				
mercury(II)	Hg	0.04, 0.01, 0.0024,	Children blood : range 1.46 - 6.81 μ g/L \rightarrow 0.0058 - 0.027 μ M				
chloride		0.0006 µM	IPChem:				
			Blood-whole blood : 0.11-10.2, 0.002-4.17, 0.19-7.93, 0.13-5.95 μ g/L (range 0.002 – 10.2) \rightarrow 8x10 ⁻⁶ - 0.041 μ M				
			Cord blood-whole blood : 0.16 - 14.1 ng/g (considering for plasma, 1.025 g/mL) \rightarrow 0.00065 - 0.058 µM,				
			Blood – plasma : n.d 4.2 μ g/L \rightarrow n.d 0.017 μ M				
Valproic acid	VA	10.000, 2500, 625,	Cord blood: range 3.87 - 75 μ g/ml \rightarrow 26.8 - 520 μ M				
		156, 39, 10 μM					
PCB138	PCB138	100, 25, 6.25, 1.56,	Cord plasma: range $0.14 - 0.18 \text{ ng/mL} \rightarrow 3.87 \text{x} 10^{-4} - 5 \text{x} 10^{-4} \mu M$ European				
11		0.39, 0.10, 0.02 μM	IPChem: cord plasma: 270 - 460 ng/L \rightarrow 0.00075 - 0.0013 µM Commission				

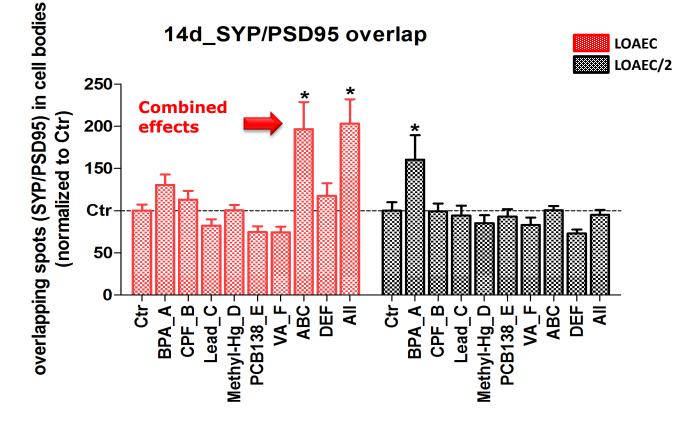
The experimental design

Differentiation of mixed neuronal/glial cells derived from human NSCs (iPSCs)



13

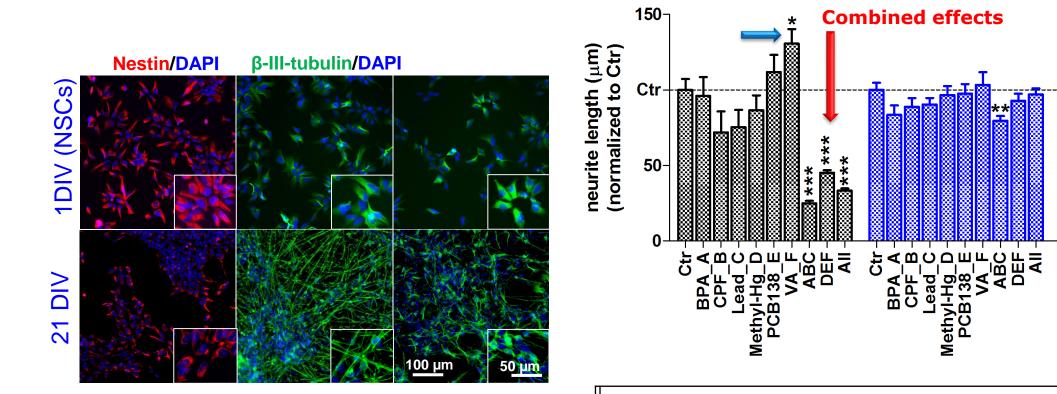
Phase II & III (some representative results)


Synaptogenesis

(14 days exposure)

PSD95 SYP DAPI

		Lead	Lead Methyl		Valproic	
BPA	Chlorpyrifos	(II)-Cl	-Hg	PCB138	Ac.	(μΜ)
12.0	21.0	0.007	0.0500	0.06	2.1	LOAEC
6.0	10.5	0.0035	0.025	0.03	1.05	LOAEC/2


Commission

Main (stat. signif.) effects:

"Sim" and "All" increased PSD95/SYP co-localization (at LOAEC)

Neurite outgrowth

	Lead(II)-							
BPA	Chlorpyrifos	CÌ	Methyl-Hg	CB138	Valproic Ac	(μM)		
6.4	37.0	0.6	0.06	6.0	210	LOAEC/2		
3.2	18.0	0.3	0.03	3.0	105	LOAEC/4		
1.6	9.0	0.15	0.015	1.5	52.5	LOAEC/8		

Main (stat. signif.) effects:

- Sim, Dis and ALL downregulates neurite length at LOAEC/2 and Sim already at LOAEC/4
- CPF drives the toxicity of the mix, followed by Lead
- VA increases neurite outgrowth features (LOAEC/2)
 - $(\rightarrow VA may have antagonistic effects in "Dis" and "All")$

European Commission

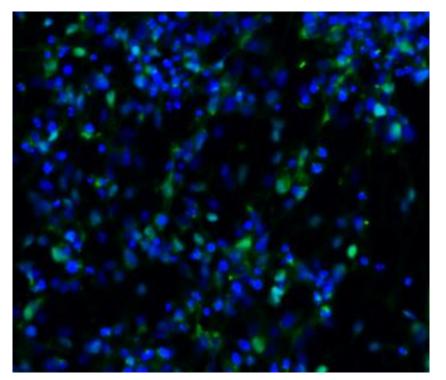
ш∢

മ

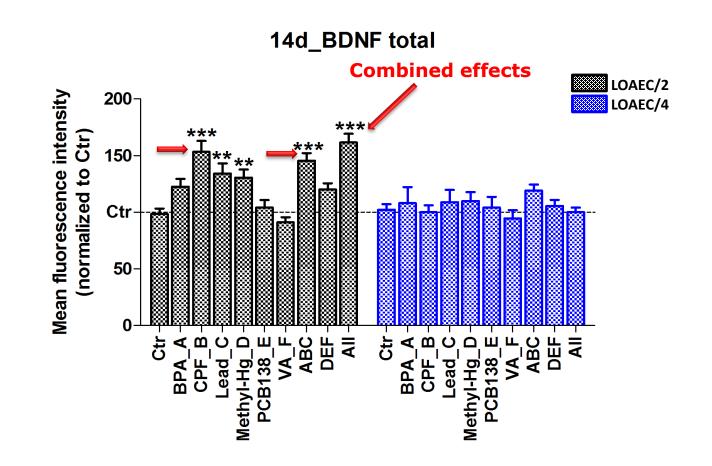
<u>5</u>8

Meth

С С


ад Рп

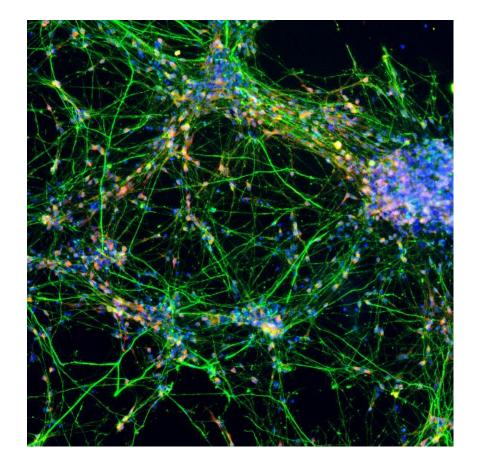
LOAEC/2 LOAEC/4


LOAEC/8

B ≥ d

BDNF protein levels

BDNF/DAPI


BPA	Chlorpyrifos	Lead(II)-Cl	Methyl-Hg	PCB138	Valproic Ac	(μΜ)
6.4	18.5	0.7	0.06	1.8	105	LOAEC/2
3.2	9.25	0.35	0.03	0.9	52.5	LOAEC/4

Main (stat signif) effects:

- CPF alone is the strongest inducer of BDNF expression, followed by Lead (at LOAEC/2)
- CPF drives toxicity of mixture (confirmed by exposure to ABC and All without CPF)

European Commission

GFAP/NF200/DAPI

BPA

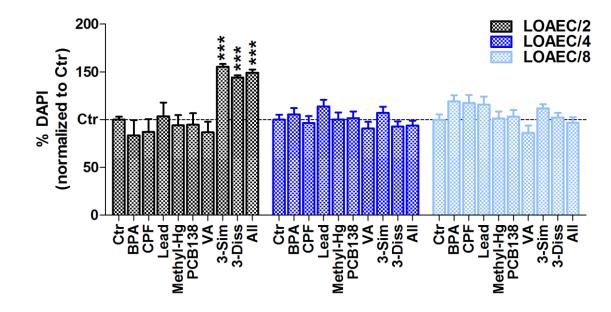
6.4

3.2

1.6

Chlorpyrifos

37.0


18.5

9.25

Neuronal cell percentage

Increase of neuronal cells number (by ~55%) after exposure to mixtures

14d_% β -III-Tub⁺ cells

0.06

0.03

0.015

Lead(II)-Cl

0.7

0.35

0.175

1,5	
**** ****	

6.0

3.0

Methyl-Hg PCB138 Valproic Ac (μM)

210

105

52.5

LOAEC/2

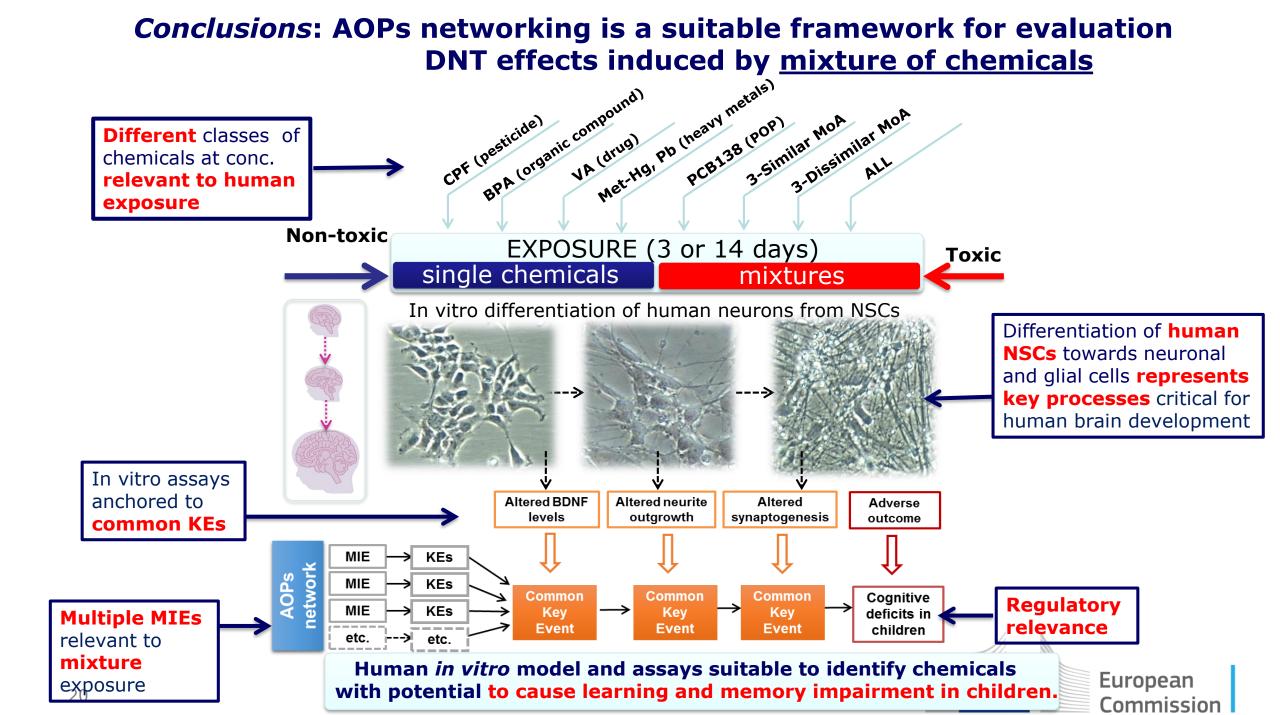
LOAEC/4

LOAEC/8

Alterations observed in the children's brain with autism spectrum disorder (ASD):

- An increase of neuronal cell number in the prefrontal cortex (approx. 67%) (Courchesne et al., 2010) (observed in vitro)
- Impaired neurite morphology: shorter and less branched neurites (Nguyen et al., 2018; Nagy et al., 2017) (observed in vitro)
- Elevated BDNF levels both in peripheral blood (Bryn et al., 2015) and in the frontal cortex (Maussion et al., 2019) as confirmed by recent meta-analyses (Saghazadeh et al., 2017; Armeanu et al., 2017) (observed in vitro)

Approx. 80% of the genes linked to ASD play an important role in early neurodevelopmental functions, neurite outgrowth and synapse formation (Casanova et al., 2014)



Conclusions:

- Low concentrations (i.e., below LOAECs) of single chemicals (non-neurotoxic) become neurotoxic in mixture, especially for the chemicals working through similar MoA
- > Our approach allowed to identify LOAECs for single chemicals and in mixture
- Human neurons exposed to mixture of chemicals at low concentrations reproduces some autismlike phenotypic feature (increased number of neurons, decreased neurite outgrowth, etc.)
- Common Key Events identified in DNT AOPs guided selection of the in vitro assays, permitting mechanistic understanding of toxicity
- > The obtained data will be used for refining the existing AOPs.

Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Pistollato F., Emilio Mendoza de Gyves, Stephanie K. Bopp, Carolina Nunes, Andrew Worth and Anna Bal-Price. Environmental Health, 2019 (under review).

Acknowledgments

Anna Bal-Price Emilio Mendoza Carolina Nunes Stephanie Bopp Andrew Worth

Unit Head Maurice Whelan

Thank you for your attention!

Joint Research Centre (JRC)

The European Commission's

in-house science service

https://ec.europa.eu/jrc/

Serving society - Stimulating innovation - Supporting legislation

